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Abstract. Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at site, 

regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major 

challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP 20 

dataset at 0.05° latitude by 0.05° longitude at 8-day interval by revising a light use efficiency model (i.e. EC-LUE). In the 

revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 

concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed 

substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) 

measurements at 84 towers from the FLUXNET2015 dataset, covering nine major ecosystem types of the globe, were used 25 

to calibrate and validate the model. The revised EC-LUE model could explain 83% and 68% of the spatial variations in the 

annual GPP at 42 calibration and 43 validation sites, respectively. In particular, the revised EC-LUE model could very well 

reproduce (~74% sites R2 >0.5; averaged R2 = 0.65) the interannual variations in GPP at 51 sites with observations greater 

than 5-years. At global scale, sensitivity analysis indicated that the long-term changes of environmental variables could be 

well reflected in the global GPP dataset. The CO2 fertilization effect on the global GPP (0.14 ± 0.001 Pg C yr−1) could be 30 

offset by the increased VPD (−0.16 ± 0.02 Pg C yr−1). The global GPP derived from different datasets exist substantial 

uncertainty in magnitude and interannual variations. The magnitude of global summed GPP simulated by the revised EC-

LUE model was comparable to other global models. While the revised EC-LUE model has a unique superiority in simulating 

the interannual variations in GPP at both site level and global scales. The revised EC-LUE model provides a reliable long-
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term estimate of global GPP because of integrating the important environmental variables. The dataset is available at 35 

https://doi.org/10.6084/m9.figshare.8942336 (Zheng et al., 2019). 

1 Introduction 

Vegetation gross primary production (GPP) is the largest carbon flux component within terrestrial ecosystems and plays an 

essential role in regulating the global carbon cycle (Canadell et al., 2007; Zhao et al., 2010). As a primary variable of the 

terrestrial ecosystem cycle, GPP estimates will substantially determine other variables of the carbon cycle (Yuan et al., 2011). 40 

Satellite-based GPP models have been developed based on the light use efficiency (LUE) principle (Monteith, 1972; Potter 

et al., 1993; Running et al., 2004; Xiao et al., 2005; Yuan et al., 2007). Thus far, LUE models have been a major tool for 

investigating the spatio-temporal changes in GPP and the environmental dominates, either independently or by combining 

with other ecosystem models (Keenan et al., 2016; Smith et al., 2016). 

However, current LUE models exhibit a poor performance in reproducing the interannual variations in GPP. A previous 45 

study indicated that seven LUE models only could explain 6–36% of the interannual variations in GPP at 51 eddy covariance 

(EC) towers (Yuan et al., 2014). Similarly, a model comparison showed that none of the examined 16 biophysical models 

nor the 3 satellite-based models could consistently reproduce the observed interannual variations in carbon exchange at 11 

forest sites in North America (Keenan et al., 2012). Seven LUE models simulated the long-term trends of global GPP varied 

from −0.15 to 1.09 Pg C yr−1 (Cai et al., 2014). An important reason for the poor performance in modeling the interannual 50 

variability is that the effect of environmental regulations on vegetation production is not completely integrated in the LUE 

models (Stocker et al., 2019). In particular, the long-term changes in several environmental variables are very important for 

accurately simulating the GPP series at the decadal scale. 

Several environmental variables should be included in GPP models. Firstly, as we all know the rising atmospheric CO2 

concentration in the past few decades substantially stimulated global vegetation growth (Zhu et al., 2016; Liu et al., 2017). 55 

Field experiments using greenhouses or open-top chambers showed that an increase of approximate 300 ppm in CO2 

concentration can increase C3 plant photosynthesis on the order of 60% (Norby et al., 1999). Free-air CO2 enrichment 

(FACE) experiments generally confirmed the enhancement in net primary production (NPP) with the rising CO2 

concentration (Ainsworth and Long, 2005). For example, four FACE experiments indicated that the forest NPP consistently 

increased at the median of 23 ± 2% when the ambient CO2 concentration was elevated to approximately 550 ppm (Norby et 60 

al., 2005). According to observations, the atmospheric CO2 concentration has risen by approximately 20% from 340 ppm 

(1982) to 410 ppm (2018) (https://www.esrl.noaa.gov/). However, the effects of CO2 fertilization on GPP have not been 

integrated in most current satellite-based LUE models. 

Secondly, solar radiation, or more specifically the photosynthetic active radiation (PAR) substantially influences the 

vegetation production of terrestrial ecosystem (Alton et al., 2007; Kanniah et al., 2012; Krupkova et al., 2017). Study 65 

indicated that the solar radiation incident at the earth surface underwent significant decadal variations (Wild et al., 2005). A 
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comprehensive analysis based on the datasets of worldwide distributed sites indicated significant decreases in solar radiation 

(2% per decade) from the late 1950s to 1990 in the regions of Asia, Europe, North America, and Africa (Gilgen et al., 1998). 

A later assessment by Wild et al. (2005) showed that the radiation increased at widespread locations since the mid-1980s. 

However, it is not only the total amount of solar radiation or PAR incident at the surface, but also, more importantly, their  70 

partitioning into direct and diffuse radiations, that impact the vegetation productivity (Urban et al., 2007; Kanniah et al., 

2012). Increased proportion of diffuse radiation enhances vegetation photosynthesis, because a higher blue/red light ratio 

within the diffuse radiation may lead to higher light use efficiency (Gu et al., 2002; Alton et al., 2007). For example, the 

sharply increased diffuse radiation induced by the 1991 Mount Pinatubo eruption enhanced the noontime vegetation 

productivity of a deciduous forest in the next 2 years (Gu et al. 2003). Besides volcanic aerosols, clouds could also reduce 75 

the total and direct radiation, while increase the proportion of diffuse radiation. Yuan et al. (2010) found that the higher LUE 

at European forests than North America was because of the higher ratio of cloudy days in Europe. Yuan et al. (2014) further 

proved that the significantly underestimated GPP during cloudy days by six LUE models was because the effects of diffuse 

radiation on LUE were neglected in these models. 

Thirdly, atmospheric vapor pressure deficit (VPD) is another factor that should be included in GPP models. As an important 80 

driver of atmospheric water demand for plants, VPD influences terrestrial ecosystem function and photosynthesis (Rawson et 

al., 1977). Rising air temperature increases the saturated vapor pressure at a rate of ~7%/K according to the Classius–

Clapeyron relationship, and therefore, VPD will increase if the atmospheric water vapor content does not increase by exactly 

the amount of saturated vapor pressure. Numerous studies indicated significant changes in the relative humidity (ratio of 

actual water vapor pressure to saturated water vapor pressure) in both humid areas and continental areas located far from 85 

oceanic humidity (Van Wijngaarden and Vincent, 2004; Pierce et al., 2013). In particular, the global averaged land surface 

relative humidity decreased sharply after the late 1990s (Simmons et al. 2010; Willett et al. 2014). The leaf and canopy 

photosynthetic rate decline when the atmospheric VPD increases due to stomatal closure (Fletcher et al., 2007). A recent 

study highlighted that increases in VPD rather than changes in precipitation will be a dominant influence on vegetation 

productivity (Konings et al., 2017). However, the influence of long-term VPD variations is not well expressed in many LUE 90 

models currently. 

We have developed a LUE model, namely the EC-LUE model, by integrating remote sensing data and eddy covariance data 

to simulate daily GPP (Yuan et al., 2007; 2010). The model has been evaluated using the observations at EC towers located 

in Europe, North America, China, and East Asia, covering various ecosystem types (Yuan et al., 2007; 2010; Li et al., 2013). 

In this study, we revised the EC-LUE model by integrating the impacts of several environmental variables (i.e., atmospheric 95 

CO2 concentration, radiation components, and atmospheric VPD) across a long-term temporal scale. Firstly, we evaluated 

the effectiveness of the revised EC-LUE model in determining the spatial, seasonal, and interannual variations in GPP from 

multiple eddy covariance sites. Then, a global GPP dataset at 0.05° spatial resolution was generated. Finally, we analyzed 

the contributions of the aforementioned environmental variables to the global GPP and discussed the spatial and interannual 

variations in different global GPP datasets. 100 
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2 Data and Methods 

2.1 Description of the revised EC-LUE model 

The terrestrial vegetation GPP can be expressed as follows in the revised EC-LUE model: 

GPP = (εmsu × APARsu + εmsh × APARsh) × Cs ×min(Ts,Ws)      (1) 

where εmsu is the maximum LUE of sunlit leaves; APARsu is the PAR absorbed by sunlit leaves; εmsh is the maximum LUE of 105 

shaded leaves; APARsh is the PAR absorbed by shaded leaves; Cs, Ts, and Ws represent the downward regulation scalars of 

atmospheric CO2 concentration ([CO2]), air temperature, and VPD on LUE ranging from 0 to 1; min represents the minimum 

value. 

The effect of atmospheric CO2 concentration on GPP is determined by the following equations (Farquhar et al., 1980; 

Collatz et al., 1991): 110 

Cs =
Ci−φ

Ci+2φ
            (2) 

Ci = Ca × χ            (3) 

where 𝜑 is the CO2 compensation point in the absence of dark respiration (ppm); Ci is the leaf internal CO2 concentration; Ca 

is the atmospheric CO2 concentration; χ is the ratio of leaf internal to atmospheric CO2 which can be estimated as follows 

(Prentice et al., 2014; Keenan et al., 2016): 115 

χ =
ε

ε+√VPD
            (4) 

ε = √
356.51K

1.6η∗
            (5) 

K = Kc(1 +
P0

K0
)            (6) 

Kc = 39.97 × e
79.43×(T−298.15)

298.15RT           (7) 

Ko = 27480 × e
36.38×(T−298.15)

298.15RT           (8) 120 

where Kc and Ko are the Michaelis–Menten constants for CO2 and O2; Po is the partial pressure of O2; Ta is air temperature 

(K); η* is the viscosity of water relative to its value at 25 °C depending on the air temperature (Korson et al., 1969); R is the 

molar gas constant (8.314 J mol−1 K−1). 

Ts and Ws can be expressed as follows: 

Ts =
(T−Tmin)×(T−Tmax)

(T−Tmin)×(T−Tmax)−(T−Topt)×(T−Topt)
         (9) 125 

Ws =
VPD0

VPD0+VPD
            (10) 

where Tmin, Topt, and Tmax are the minimum, optimum, and maximum temperatures (K) for vegetation photosynthesis, 

respectively (Yuan et al., 2007); VPD0 is the half saturation coefficient of the VPD constraint equation (kPa). 

APARsu and APARsh can be expressed as follows (Chen et al., 1999): 
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APARsu = (PARdir ×
cos(β)

cos(θ)
+

PARdif−PARdif,u

LAI
+ C) × LAIsu       (11) 130 

APARsh = (
PARdif−PARdif,u

LAI
+ C) × LAIsh         (12) 

PARdif,u = PARdif × exp(
−0.5×Ω×LAI

cos(θ̅)
)         (13) 

where PARdir is the direct PAR; PARdif is the diffuse PAR; PARdif,u is the diffuse PAR under the canopy; C represents the 

multiple scattering effects of direct radiation; Ω is the clumping index, which is set according to vegetation types (Tang et al., 

2007); θ is the solar zenith angle; β is the mean leaf–sun angle, which is set to 60°; θ̅ is the representative zenith angle for 135 

diffuse radiation transmission and can be expressed by LAI (Chen et al., 1999): 

cos(θ̅) = 0.537 + 0.025 × LAI          (14) 

The LAIs of shaded leaves (LAIsh) and sunlit leaves (LAIsu) in Eqs. (11) and (12) are computed following Chen et al (1999): 

LAIsu = 2 × cos(θ) × (1 − e
−0.5×Ω×

LAI

cos(θ))         (15) 

LAIsh = LAI − LAIsu           (16) 140 

The parameters εmsu, εmsh, φ, and VPD0 were calibrated using the estimated GPP from EC towers. The initial ranges of εmsu 

and εmsh were set to 0–12 g C MJ−1, φ was set to 0–100 ppm, VPD0 was set to 0–4 kPa. The optimized values of these 

parameters were adopted until the root mean square error (RMSE) of the model simulated and the EC estimated daily GPP 

approached to the minimum value. 

2.2 Data from the eddy covariance towers 145 

The FLUXNET2015 dataset (http://www.fluxdata.org) includes over 200 variables of carbon fluxes, energy fluxes, and 

meteorological data collected and processed at sites by the FLUXNET community. In our study, eighty-four EC sites in 

FLUXNET2015 dataset were utilized to optimize the parameters and evaluate the performance of the revised EC-LUE 

model, including nine major terrestrial ecosystem vegetation types (Table 1): evergreen broadleaf forests (EBF), evergreen 

needleleaf forests (ENF), deciduous broadleaf forests (DBF), mixed forests (MF), grasslands (GRA), savannas (SAV), 150 

shrubland (SHR), wetlands (WET), and croplands (CRO). More information about the characteristics of these sites can be 

referred to the FLUXNET website. For each site, the aggregated daily GPP, PAR, air temperature (Ta), and VPD were used 

in our study. The daily meteorological variables were gap-filled and/or downscaled from the ERA-interim reanalysis dataset 

in both space and time (Vuichard and Papale, 2015). The carbon flux measurements (i.e., net ecosystem exchange (NEE)) 

were gap-filled and partitioned into GPP and ecosystem respiration (Re) using a nighttime based approach (Reichstein et al. 155 

2005). The gap-filled technique of the carbon flux measurements and meteorological variables is the marginal distribution 

sampling (MDS) method described in Reichstein et al. (2005). 

<<Table 1>> 
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2.3 Data at the global scale 

The input data of the revised EC-LUE model are shown in Table2. The global scale meteorological reanalysis dataset was 160 

derived from the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) dataset. It was 

produced by NASA’s Global Modeling and Assimilation Office that uses an upgraded version of the GEOS-5 (Rienecker et 

al., 2011). It has been validated carefully using surface meteorological datasets and enhanced assimilation system to reduce 

the uncertainty in various meteorological variables globally. In our study, we obtained the daily air temperature (Ta, ℃), dew 

point temperature (Td, ℃), direct PAR, and diffuse PAR at 0.625° in longitude by 0.5° in latitude from 1982 to 2017. VPD 165 

was calculated from air temperature and dew point temperature: 

SVP = 6.112 × e
17.67Ta
Ta+243.5           (17) 

RH = e
17.625Td
Td+243.04

−
17.625Ta
Ta+243.04           (18) 

VPD = SVP × (1 − RH)           (19) 

where SVP is the saturated vapor pressure (k Pa), and RH is the relative humidity. 170 

The 8-day Global LAnd Surface Satellite-leaf area index (GLASS LAI) dataset at 0.05° latitude by 0.05° longitude was 

adopted to indicate vegetation growth from 1982 to 2017. It was produced using the general regression neural networks 

(GRNNs) trained with the fused MOD15 LAI and CYCLOPES LAI and the preprocessed MODIS/AVHRR reflectance data 

over the BELMANIP sites (Xiao et al., 2016). Products validation and comparison showed that the GLASS LAI product was 

spatially complete and temporally continuous with lower uncertainty (Xu et al., 2018). 175 

Additionally, the MCD12Q1 product with IGBP classification scheme was used as land cover map and the NOAA’s Earth 

System Research Laboratory (ESRL) CO2 concentration dataset was used to express the CO2 fertilization effect. 

<<Table 2>> 

2.4 Environmental contributions to long-term changes in GPP 

To evaluate the contribution of the major environmental variables to GPP, including the atmospheric CO2 concentration 180 

([CO2]), climate, and satellite-based LAI, two types of experimental simulations where performed. The first simulation 

experiment (SALL) was a normal model run, with all the environmental drivers changing over time. In the second type of 

simulation experiments (SCLI0, SLAI0, and SCO20), two driving factors could be varied with time while maintaining the third 

constant at an initial baseline level. For example, the SCLI0 simulation experiment allowed the LAI and atmospheric [CO2] to 

vary with time while the climate variables were kept constant at 1982 values. The SLAI0 and SCO20 simulation experiments 185 

kept LAI and atmospheric [CO2] constant at 1982 values and varied the other two variables. 

Considering the differences between the simulation results of the first type (SALL) and second type (SCO20 and SLAI0) of 

experiments, the GPP sensitivities to atmospheric [CO2] (βCO2) and LAI (βLAI) were estimated as follows: 

∆GPP(SALL−SCO20)i = β
CO2

× ∆CO2(SALL−SCO20)i + ε        (20) 
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∆GPP(SALL−SLAI0)i = β
LAI

× ∆LAI(SALL−SLAII0)i + ε        (21) 190 

where ΔGPPi, ΔCO2i, and ΔLAIi denote the differences in the GPP simulations, atmospheric [CO2], and LAI between the two 

model experiments from 1982 to 2017, and ε is the stochastic error term. 

The GPP sensitivities to the three climate variables: air temperature (βTa), VPD (βVPD), and PAR (βPAR) were calculated using 

a multiple regression approach: 

∆GPP(SALL−SCLI0)i = β
Ta
× ∆Ta(SALL−SCLI0)i + β

VPD
× ∆VPD(SALL−SCLI0)i + β

PAR
× ∆PAR(SALL−SCLI0)i + ε  (22) 195 

where ΔTai, ΔVPDi, and ΔPARi denote the differences in Ta, VPD, and PAR time series between the two model experiments 

(SALL and SCLI0), respectively. The regression coefficient β was estimated using the maximum likelihood analysis. 

2.5 Statistical analysis 

Coefficient of determination (R2), RMSE, and bias (the difference between observations and simulations) were adopted to 

evaluate the performance of the revised EC-LUE model. 200 

3 Results 

3.1 Parameter optimization and model validation 

This study used EC measurements at 42 sites to calibrate the parameter values and 43 sites to validate the model accuracy of 

the revised EC-LUE model. The parameters (εmsu, εmsh, φ, and VPD0) of each vegetation type are shown in Table 3. We 

evaluated the model performance by using the tower-derived meteorology data and global reanalysis meteorology, 205 

respectively. In general, the revised EC-LUE model could effectively reproducing the spatial, seasonal, and annual variations 

in the tower-estimated GPP at most of the calibration and validation sites (Figs. 1–4). 

<< Table 3>> 

By using the tower-derived meteorology data, the revised EC-LUE model explained 76% of the spatial variations in GPP 

across all the calibration and validation sites with no obvious systematic errors (Fig. 1(a)). Furthermore, the model 210 

respectively explained 83% and 67% of the spatial variations in GPP at the calibration and validation sites. In contrast, the 

model performance decreased when using the meteorological reanalysis dataset, explaining only 52% of the spatial 

variations in the GPP and slightly overestimating the GPP at the sites with low/moderate GPP values (Fig. 1(b)). 

<<Figure 1>> 

Similarly, the revised EC-LUE model also shows a good performance in reproducing the seasonal variations in the GPP at 215 

most EC sites (Figs. 2–3). By using the tower-derived meteorology data, the averaged R2 over the calibration and validation 

sites was 0.78 and 0.72, respectively. Over 92% of the calibration and validation sites showed high R2 (>0.5). The two low 

R2 (< 0.4) sites (i.e., BR-Sa1 and BR-Sa3) were tropical forests without pronounced seasonal pattern of GPP (Fig. 2(a); Fig. 

3(a)). The RMSE and the absolute value of bias varied from 0.68 (CN-Du2) to 5.72 (US-Ne1) g C m−2 d−1 and from 0.002 
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(CA-NS1) to 2.12 (US-ARM) g C m−2 d−1, respectively. The averaged RMSE and the absolute value of bias over all the sites 220 

were 2.64 and 0.67 g C m−2 d−1, respectively (Fig. 2(b)–(c); Fig. 3(b)–(c)). Additionally, there is no obvious difference 

between the seasonal GPP performance when using the tower-derived meteorology data and meteorological reanalysis 

dataset (Figs. 2–3). 

<<Figure 2/ Figure 3>> 

The ability of the LUE models to reproduce the interannual variations in GPP was investigated at 51 EC towers with 225 

observations greater than 5-years (Table 1; Fig. 4). We examined the relations between the mean annual GPP simulations 

and observations at each site and used the coefficient correlation (R2) and slope of the regression relationship to investigate 

the model capability in simulating the interannual variations in GPP. The result showed that the revised EC-LUE model 

could effectively determine the interannual variations in GPP (Fig. 4). Approximately 74% of the sites showed higher R2 

values (>0.5) for both tower-derived meteorology and reanalysis meteorology derived models (Fig. 4(a)). The mean values 230 

of R2 between the revised EC-LUE model simulated GPP and the tower estimated GPP were 0.65 and 0.61 for the models 

derived from tower-derived meteorology and reanalysis meteorology, and both the R2 values are higher than the original EC-

LUE model (0.36) and other LUE models (<0.30) (Fig. 4(c)). The averaged slopes of the revised EC-LUE model were 0.71 

and 0.64 for tower-derived meteorology and reanalysis meteorology derived models, while the slope of the original EC-LUE 

model was 0.56 (Fig. 4(c)). 235 

<<Figure 4>> 

3.2 Spatio-temporal patterns of global GPP 

A global GPP dataset at 0.05° latitude by 0.05° longitude was generated ranging from 1982 to 2017 based on the revised EC-

LUE model. The long-term averaged value of the global summed GPP was 125.3 ± 3.13 Pg C yr−1 across the vegetated area. 

Fig. 5 shows the global distributed patterns of the annual averaged GPP for each pixel. The GPP was high over the tropical 240 

forest areas, such as Amazon and Southeast Asia, where the moisture and temperature conditions are sufficient for 

photosynthesis (Fig. 5(a)). The GPP decreased with the decreasing gradients of temperature and precipitation (Fig. 5(b)). The 

temperate and subhumid regions have moderate GPP; and the lowest GPP is located in arid or cold regions, where either 

precipitation or temperature is limited (Fig. 5(b)). 

<<Figure 5>> 245 

GPP trends over the period of 1982–2017 were determined for each pixel using a linear regression analysis (Fig. 6). In 

general, the revised EC-LUE model predicted an increased trend in the annual mean GPP from 1982 to 2017. Approximately 

69.5% of the vegetated areas, mainly located in temperate and humid regions, showed increased trends. The spatial 

distributed patterns of GPP trend along with the temperature and precipitation gradients was more heterogeneous than that of 

the mean annual GPP (Fig. 5(b); Fig. 6(b)). The decreased GPP areas were mainly distributed in the tropic regions with 250 

abundant precipitation and high temperature, particularly in the Amazon forest. The cold or arid areas exhibited less 

variations in GPP (Fig. 6(b)). 
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<<Figure 6>> 

3.3 Contributions of environmental variables to GPP 

To quantify the contributions of the environmental variables to long-term changes in GPP, we explored the sensitivity of 255 

global summed GPP to climate variables (i.e., VPD, Ta, and PAR), LAI, and atmospheric CO2 (Fig. 7). The global summed 

GPP generated from different experimental simulations (section 2.4) exhibited differently in terms of the annual mean value, 

trend, and standard deviation (Fig. 7(a)). The normal simulated GPP (SALL GPP, all the environmental drivers changing over 

time) significantly increased at the rate of 0.17 Pg C yr−1, while the increasing rate of SCLI0 GPP (climate variables were kept 

constant at 1982 values) was even greater (0.36 Pg C yr−1). On the contrary, the SLAI0 GPP (LAI was kept constant at 1982 260 

values) showed a significantly decreasing trend (−0.06 Pg C yr−1), and the SCO20 GPP (atmospheric [CO2] was kept constant 

at 1982 values) showed an insignificantly increasing trend (Fig. 7(a)). The sensitivity analysis showed that the global GPP 

decreased by approximately 6 Pg C with a 0.1 kPa increase in VPD. This is comparable to the increase in GPP with a 100 

ppm rise in atmospheric [CO2] (i.e., βCO2 = 7.62 ± 0.04 Pg C 100 ppm−1) or 0.1 unit greening of LAI (i.e., βLAI = 5.98 ± 0.09 

Pg C 0.1 unit−1) or 100 MJ increase in PAR (i.e., βPAR = 5.76 ± 0.23 Pg C 100 MJ−1) (Fig. 7(b)). Over the period of 1982–265 

2017, the increased VPD resulted in the global GPP decreases of −0.16 ± 0.02 Pg C yr−1, which offset the fertilization effect 

of CO2 (0.14 ± 0.001 Pg C yr−1). The global GPP showed a decreased trend after 2001 due to the joint effect of increased 

VPD and decreased PAR (Fig. 7(c)). While the increased trend of GPP before 2000 was mainly affected the increased PAR 

and greening of LAI (Fig. 7(c)). 

<<Figure 7>> 270 

4 Discussion 

4.1 Model accuracy analysis 

Numerous studies have shown that most GPP models can reproduce the spatial changes in GPP but failed to reproduce the 

temporal variations (Keenan et al., 2012; Yuan et al., 2014). Therefore, the capacity to reproduce realistic interannual 

variations for a GPP model is significantly important. In our study, the revised EC-LUE model performed a higher accuracy 275 

in reproducing the interannual variations in GPP than did the original EC-LUE model and other LUE models. Yuan et al. 

(2014) reported that the averaged slope of the regression relation between the mean annual GPP simulated by seven LUE 

models and the mean annual GPP estimated from EC tower data ranged from 0.19 to 0.56 (Fig. 4(c)). While the revised EC-

LUE model showed a higher slope of regression relation (0.71), which is much closer to 1 than that obtained from other LUE 

models (Fig. 4(c)). The VPM GPP showed less interannual variation across most biomes (R2 <0.5), probably because of the 280 

insensitivity of the environmental stress factors at the interannual scale (Zhang et al., 2017). In contrast, 74% of the sites 

showed higher R2 values (>0.5) for the revised EC-LUE model. The improvements of the revised EC-LUE model in 

reproducing interannual variations are owing to the integration of several important environmental drivers for vegetation 
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production (i.e., atmospheric CO2 concentration, radiation components, and VPD), which exhibited large variations and 

contributed significantly to vegetation production at interannual scale. 285 

By integrating the atmospheric CO2 concentration, the revised EC-LUE model suggested a CO2 sensitivity (βCO2) of 7.62 ± 

0.04 Pg C per 100 ppm (Fig. 7(b)), which indicates an increase of 6.1% in GPP with a rise of 100 ppm in atmospheric [CO2]. 

Our estimate is comparable to the observed response of NPP to the increased CO2 in the FACE experiments (13% per 100 

ppm) and estimates of other ecosystem models (5–20% per 100 ppm) (Piao et al., 2013). The elevated atmospheric CO2 

concentration substantially contributes to the vegetation productivity. 290 

The evaporation fraction (EF), namely the ratio of evapotranspiration (ET) to net radiation (Rn), was used to indicate the 

water stress on vegetation growth in the original EC-LUE model (Yuan et al., 2007; 2010). While the atmospheric VPD was 

used to indicate water stress to avoid the aggregated errors from ET simulations in the revised EC-LUE model. 

Physiologically, vegetation production is sensitive to both atmospheric VPD and soil moisture availability to roots. Recent 

studies highlighted that the increase in VPD had a larger limitation to the surface conductance and evapotranspiration than 295 

soil moisture over short time scales in many biomes (Novick et al., 2016; Sulman et al., 2016). Other studies have also 

suggested substantial impacts of VPD on vegetation growth (de Cárcer et al., 2018; Ding et al., 2018), forest mortality 

(Williams et al., 2013), and crop yields (Lobell et al., 2014). It is increasingly important to integrate the atmospheric water 

constraint to the carbon and water flux modelling. 

4.2 Comparison of global GPP product 300 

Global GPP estimates remain highly uncertain despite the substantial advances in remote sensing technology, ground 

observations, and theory of carbon flux modeling (Zheng et al., 2018; Ryu et al., 2019). Our study showed large differences 

in the magnitude of global GPP estimated by various models varying from 92.7 to 168.7 Pg C yr−1 (Figs. 8–9). The LUE 

models simulated the global GPP ranging from 92.7 to 133.7 Pg C yr−1 (Fig. 9(a1)). Several machine learning approaches 

estimated the global GPP ranging from 108.9 to 144.2 Pg C yr−1 (Fig. 9(a2)). A comparison of ten global terrestrial 305 

ecosystem models of TRENDY showed that the global GPP ranged from 118.6 to 168.7 Pg C yr−1 (Fig. 9(a3)). The revised 

EC-LUE model quantified the mean global GPP from 1982 to 2017 as 125.3 ± 3.1 Pg C yr−1. Other studies also support our 

conclusion that there are large uncertainties in the GPP estimates. By comparing diverse GPP models and products, Anav et 

al. (2015) reported that the global GPP ranged from 112 to 169 Pg C yr−1. Seven satellite-based LUE models estimated the 

global GPP ranged from 95.1 to 139.7 Pg C yr−1 over the period of 2000–2010 (Cai et al., 2014). 310 

<<Figure 8>> 

The interannual variability and trend in GPP also vary substantially with different models. This study showed that the 

interannual variability (standard deviation) ranged from 0.33 to 6.79 Pg C yr−1, with the trends varying from −0.07 to 0.84 Pg 

C yr−2 (Fig. 9). The biophysical models showed large interannual variability, with the standard deviation ranging from 1.38 

to 6.79 Pg C yr−1. The LUE models estimated the interannual variability varying from 1.30 to 3.13 Pg C yr−1. In contrast, the 315 

machine learning models exhibited less interannual variability with standard deviation under 1.0 Pg C yr−1. The interannual 

https://doi.org/10.5194/essd-2019-126

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 7 August 2019
c© Author(s) 2019. CC BY 4.0 License.



11 

 

variability of the revised EC-LUE model was 3.1 Pg C yr−1 (Figs. 9(b1)–(b3)). In general, the GPP interannual variability 

before year 2000 year was greater than that after year 2001 for most of the biophysical models and LUE models (Figs. 

9(b1)–(b3)). Most GPP models showed increased trend or insignificant trend during all valid years and before 2000. Similar 

to the standard deviation, the trends of machine learning models were less than other models. Compared with the other 320 

models, CLASS and the revised EC-LUE model showed a significant decreasing trend after 2001 (Figs. 9(c1)–(c3)), 

probably because of the joint effect of increased VPD and decreased PAR (Fig. 7(c)). 

<<Figure 9>> 

4.3 Model uncertainty 

The revised EC-LUE model showed the lowest accuracy for the evergreen broadleaf forests in the tropic areas (Figs. 2–3). 325 

Similarly, other satellite-based models exhibited a large uncertainty in the GPP simulations over tropical forest areas (Ryu et 

al., 2011; Yuan et al., 2014). MODIS GPP product (MOD17) underestimated the GPP at high productivity sites over the 

tropical evergreen forests (de Almeida et al., 2018). Regarding the quality of satellite data, a high cloud cover exists over 

tropical regions, introducing large uncertainties to FAPAR/LAI and other vegetation indices (e.g., NDVI and EVI). For 

example, less reliable MOD15 FAPAR data during January to April because of the cloudiness contamination, which could 330 

substantially affect the seasonality of GPP estimates (de Almeida et al., 2018). In addition, the quality of satellite data even 

affects the evaluation of the interannual variations. Saleska et al. (2007) reported that a large scale green-up in the Amazon 

evergreen forests during the drought in 2005 using MODIS EVI data. However, an opposite conclusion was arrived when 

cloud-contaminated data were excluded from the analysis, showing no obvious green-up in the Amazon evergreen forests 

during the drought in 2005 (Samanta et al., 2010). Additionally, several subsequent studies found increased LAI and EVI 335 

during the dry season in the Amazon evergreen forests; however, a recent study highlighted that the apparent seasonal 

changes in EVI result from the variations in the sun-sensor geometry rather than vegetation greenness (Morton et al., 2014). 

The latest study highlighted that the aggregate canopy phenology rather than the climate changes is the main causes of the 

seasonal changes in photosynthesis in evergreen broadleaf forests (Wu et al., 2016). In particularly, the new leaf growing 

synchronously with dry season litterfall may shift the old canopy to be younger, which can explain the significant seasonal 340 

increase (~27%) in the ecosystem photosynthesis. Therefore, the vertical changes in leaf age and photosynthesis ability with 

canopy depth are important to simulate the seasonal variations in carbon flux in tropical forests (Wu et al., 2017). These leaf 

trait related parameters can be simulated from narrow-band spectra of leaves (Serbin et al., 2012; Dechant et al., 2017). 

Nevertheless, because of the limitation in obtaining the large scale hyperspectral remote sensing data, regional or global 

estimation of these parameters are currently unavailable. 345 

The revised EC-LUE model does not integrate the regulation of soil nitrogen content on vegetation production. Atmospheric 

nitrogen deposition has exhibited a large increasing trend in the past few decades because of the excessive fossil fuel 

combustion in the industrial and transportation sectors and the abuse of nitrogenous fertilizer in the agricultural practice 

(Galloway et al., 2004). And the global land atmospheric nitrogen deposition is expected to further increase dramatically 
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from 25–40 Tg N yr-1 in 2000s to 60–100 Tg N yr-1 in 2100 (Lamarque et al., 2005). A meta-analysis of worldwide nitrogen 350 

addition experiments found that nitrogen addition could have a significantly positive effect on vegetation productivity (Liu 

and Greaver, 2009). As most terrestrial ecosystems are nitrogen limited, quantifying the spatio-temporal distributions of 

vegetation nitrogen content at large scales is essential to improve the accuracy of carbon flux estimation. Several studies 

quantified the leaf nitrogen content by detecting the nitrogen absorption spectra from the narrow-band of hyperspectral data 

(Cho, 2007). However, leaf water, starch, lignin, and cellulose overlap with the absorption characters of nitrogen in the 355 

shortwave infrared bands, making it difficult to retrieve the nitrogen content (Kokaly and Clark, 1999). Additionally, canopy 

structures, background, and the illumination/viewing geometry, can further decrease the capacity to detect leaf nitrogen 

(Yoder and Pettigrew-Crosby, 1995; Knyazikhin et al., 2013). Advances in inversion and statistical models of leaf or canopy 

nitrogen have emerged (Asner et al., 2011; Dechant et al., 2017; Wang et al., 2018), but these methods require further 

evaluation over large regions and the global map of leaf or canopy nitrogen is not available yet. 360 

5 Data availability 

The 0.05° × 0.05° global GPP dataset for 1982-2017 is available at https://doi.org/10.6084/m9.figshare.8942336 (Zheng et 

al., 2019). The dataset is provided in hdf format at 8-day interval. The valid value is ranged from 0 to 3000, and the 

background fill value is 65535. The scale factor of the data is 0.01. Each hdf file represents an 8-day GPP at daily value (unit: 

g C m-2 day-1). To obtain the summation of each 8-day (or 5-day or 6-day) period, please multiply the GPP value by 365 

corresponding days (8 for the first 45 values, and 5 or 6 for the last value in a year). 

6 Conclusion 

In this study, we produced a long-term global GPP dataset by integrating several major long-term environmental variables: 

atmospheric CO2 concentration, radiation components, and atmospheric water vapor pressure. These environmental variables 

showed substantial long-term changes and contributed significantly to vegetation production at interannual scale. The 370 

revised EC-LUE performed well in simulating the spatial, seasonal, and interannual variations in global GPP. Particularly, it 

has a unique superiority in reproducing the interannual variations in GPP at both site level and global scales. Therefore, the 

GPP derived from the revised EC-LUE model provides an alternative and reliable estimates of global GPP at the long-term 

scale by integrating the important environmental variables. 
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Tables 610 

 

Table 1: Information on the eddy covariance (EC) sites used in this study for model calibration and validation. 

Site Name Latitude Longitude Vegetation Type Study Period 

Model calibration 

FI-Jok 60.90oN 23.51oE CRO-C3 2000-2003 

US-Ne3 41.17oN 96.43oW CRO-C3/C4 2001-2011 

*US-ARM 36.61oN 97.49oW CRO-C3/C4 2003-2012 

*FR-Gri 48.84oN 1.95oE CRO-C4 2004-2011 

DE-Kli 50.89oN 13.52oE CRO-C4 2004-2011 

US-KS2 28.61oN 80.67oW SHR 2003-2006 

*DK-Sor 55.49oN 11.64oE DBF 1996-2014 

*US-UMB 45.56oN 84.71oW DBF 2000-2011 

CA-TPD 42.64oN 80.56oW DBF 2012-2014 

*DE-Hai 51.08oN 10.45oE DBF 2000-2011 

*US-Ha1 42.54oN 72.17oW DBF 1991-2011 

*US-MMS 39.32oN 86.41oW DBF 1999-2011 

*US-Oho 41.55oN 83.84oW DBF 2004-2011 

CN-Din 23.17oN 112.54oE EBF 2003-2005 

*GF-Guy 5.28oN 52.92oW EBF 2004-2014 

*BR-Sa1 2.86oS 54.96oW EBF 2008-2011 

IT-La2 45.95oN 11.29oE ENF 2001 

*CA-Qfo 49.69oN 74.34oW ENF 2003-2010 

*US-NR1 40.03oN 105.55oW ENF 1999-2011 

*RU-Fyo 56.46oN 32.92oE ENF 1998-2011 

*CA-NS2 55.91oN 98.52oW ENF 2001-2005 

*NL-Loo 52.17oN 5.74oE ENF 1996-2011 

*DE-Obe 50.78oN 13.72oE ENF 2008-2011 

*FI-Hyy 61.85oN 24.30oE ENF 1996-2011 

US-Me6 44.32oN 121.61oW ENF 2010-2011 

CA-SF1 54.49oN 105.82oW ENF 2003-2006 

*CZ-BK1 49.50oN 18.54oE ENF 2004-2011 

*CA-SF2 54.25oN 105.88oW ENF 2001-2005 
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CA-NS4 55.91oN 98.38oW ENF 2003-2005 

CN-HaM 37.37oN 101.18oE GRA 2002-2004 

US-IB2 41.84oN 88.24oW GRA 2004-2011 

CN-Du2 42.05oN 116.28oE GRA 2007-2008 

CN-Cng 44.59oN 123.51oE GRA 2007-2010 

*CH-Cha 47.21oN 8.41oE GRA 2006-2008; 2010-2011 

*CH-Oe1 47.29oN 7.73oE GRA 2002-2008 

CN-Cha 42.40oN 128.10oE MF 2003-2005 

*CA-Gro 48.22oN 82.16oW MF 2003-2011 

*US-PFa 45.95oN 90.27oW MF 1996-2011 

CN-Ha2 37.61oN 101.33oE WET 2003-2005 

RU-Che 68.61oN 161.34oE WET 2002-2005 

US-WPT 41.46oN 83.00oW WET 2011-2013 

*US-Ton 38.43oN 120.97oW SAV 2001-2011 

Model validation 

*US-Ne2 41.16oN 96.47oW CRO-C3/C4 2001-2011 

*DE-Kli 50.89oN 13.52oE CRO-C3 2004-2014 

*US-Ne1 41.16oN 96.47oW CRO-C4 2001-2011 

DE-RuS 50.87oN 6.45oE CRO-C4 2011-2014 

*US-UMd 45.56oN 84.70oW DBF 2007-2014 

*US-WCr 45.81oN 90.08oW DBF 1999-2006 

*FR-Fon 48.48oN 2.78oE DBF 2005-2011 

JP-MBF 44.39oN 142.32oE DBF 2004-2005 

IT-PT1 45.20oN 9.06oE DBF 2002-2004 

*IT-Ro2 42.39oN 11.92oE DBF 2002-2011 

*FR-Pue 43.74oN 3.60oE EBF 2000-2011 

MY-PSO 2.97oN 102.31oE EBF 2003-2009 

BR-Sa3 3.02oS 54.97oW EBF 2000-2003 

*IT-Lav 45.96oN 11.28oE ENF 2003-2011 

*IT-Ren 46.59oN 11.43oE ENF 1999-2004; 2009-2011 

*CA-NS5 55.86oN 98.49oW ENF 2001-2005 

*DE-Tha 50.96oN 13.57oE ENF 1997-2011 

*CA-TP3 42.71oN 80.35oW ENF 2003-2011 
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*CA-TP1 42.66oN 80.56oW ENF 2003-2011 

CA-NS3 55.91oN 98.38oW ENF 2001-2005 

CA-NS1 55.88oN 98.48oW ENF 2002-2005 

DE-Lkb 49.10oN 13.30oE ENF 2009-2011 

*US-Me2 44.45oN 121.56oW ENF 2002-2011 

*IT-SRo 43.73oN 10.28oE ENF 1999-2012 

CN-Qia 26.74oN 115.06oE ENF 2003-2005 

*CA-TP2 42.77oN 80.46oW ENF 2003-2007 

*US-Blo 38.90oN 120.63oW ENF 1997-2007 

RU-Ha1 54.73oN 90.00oE GRA 2002-2004 

*CH-Fru 47.12oN 8.54oE GRA 2006-2008; 2010-2011 

*CZ-BK2 49.49oN 18.54oE GRA 2006-2011 

*NL-Hor 52.24oN 5.07oE GRA 2004-2011 

*US-Goo 34.25oN 89.87oW GRA 2002-2006 

US-AR2 36.64oN 99.60oW GRA 2009-2011 

US-AR1 36.43oN 99.42oW GRA 2009-2011 

*BE-Vie 50.31oN 6.00oE MF 1999-2011 

US-Syv 46.24oN 89.35oW MF 2001-2006 

*BE-Bra 51.31oN 4.52oE MF 1999-2011 

JP-SMF 35.26oN 137.08oE MF 2002-2006 

US-Ivo 68.49oN 155.75oW WET 2004-2007 

DE-Akm 53.87oN 13.68oE WET 2009-2014 

DE-Spw 51.89oN 14.03oE WET 2010-2011 

*US-Los 46.08oN 89.98oW WET 2000-2010 

DE-SfN 47.81oN 11.33oE WET 2012-2014 

* indicates the site was used to investigate the interannual variations in GPP with observations greater than 5-years. 
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Table 2: Input data used to drive the revised EC-LUE model. 615 

Variable Dataset/provider Source 

Air temperature MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

Dew point temperature MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

Direct PAR MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

Diffuse PAR MERRA2 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 

LAI GLASS http://www.glass.umd.edu/Download.html 

Landcover map MCD12Q1 https://lpdaac.usgs.gov/products/mcd12q1v006/ 

CO2 concentration NOAA’s Earth System Research Laboratory www.esrl.noaa.gov/gmd/ccgg/trends/ 

 

 

Table 3: Optimized parameters (εmsu, εmsh, 𝛗, and VPD0) of the revised EC-LUE model for different vegetation types. 

Vegetation Types DBF ENF EBF MF GRA CRO-C3 CRO-C4 SAV SHR WET 

εmsu (g C MJ-1) 1.16 1.80 1.71 1.16 0.83 1.17 2.35 2.05 0.86 1.23 

εmsh (g C MJ-1) 3.33 3.95 3.97 3.16 1.75 2.38 5.54 3.95 2.42 2.45 

𝜑 (ppm) 32 25 20 49 57 43 54 54 34 36 

VPD0 (kPa) 0.93 0.72 0.44 0.58 1.31 0.82 0.94 1.24 1.23 0.42 

 

  620 
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Figures 

 

 

Figure 1: Comparisons between annual mean GPP estimated from EC towers and annual mean GPP simulated by the revised EC-

LUE model. The modeled GPP were simulated using (a) tower-derived meteorology (calibration: y = 0.82x + 0.75, R2 = 0.83; 625 
validation: y = 0.75x + 1.13, R2 = 0.68) and (b) global reanalysis meteorology (calibration: y = 0.60x + 1.66, R2 = 0.62; validation: y 

= 0.56x + 1.84, R2 = 0.40). The black lines are the regression lines, and the red dash lines are the 1:1 lines. The insert equations are 

the regression equations derived from all the sites. 
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Figure 2: Comparisons of 8-day mean GPP between the observations at 42 calibration sites and the model simulations. Solid and 630 
open dots indicate the GPP simulations derived from tower-derived meteorology data and meteorological reanalysis dataset, 

respectively. 
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Figure 3: Comparisons of 8-day mean GPP between the observations at 43 validation sites and the model simulations. Solid and 

open dots indicate the GPP simulations derived from tower-derived meteorology data and meteorological reanalysis dataset, 635 
respectively. 
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Figure 4: Site percentage of (a) correlation coefficients (R2), and (b) regression slopes between the model simulated and tower-

based interannual variabilities in GPP. (c) Averaged values (error bars represent the standard deviations) of R2 and slope for 640 
various LUE models. rEC-LUE (T) and rEC-LUE (R) indicate the revised EC-LUE models derived from tower-derived 

meteorology data and meteorological reanalysis dataset. The mean value of R2 and slopes of the other seven LUE models in the 

figure were obtained from the study by Yuan et al. (2014). 

 

 645 

 

Figure 5: Spatial pattern of global GPP simulated by the revised EC-LUE model during 1982–2017: (a) averaged annual GPP, (b) 

averaged annual GPP at different temperature and precipitation gradients. 
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Figure 6: Spatial pattern of global GPP trend simulated by the revised EC-LUE models during 1982–2017: (a) trend of annual 

GPP, (b) trend of annual GPP at different temperature and precipitation gradients. 

 

 655 

Figure 7: Long-term changes in global GPP and the environmental regulations: (a) Global summed GPP derived from the four 

experimental simulations in section 2.4, (b) GPP sensitivity to climate variables (i.e., VPD, T, and PAR), LAI, and atmospheric 

CO2, (c) contributions of climate variables (i.e., VPD, T, and PAR), LAI, and atmospheric CO2 to GPP changes over 1982–2017, 

1982–2000, and 2001–2017. * indicates the significant level at p-value<0.05. 
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 660 

Figure 8: Comparisons of annual global summed GPP estimates from various models. The datasets or model algorithms were 

obtained from: EC-LUE (Cai et al., 2014), MODIS (Smith et al., 2016), MOD17 C6 (Running et al., 2004), PR (Keenan et al., 2016), 

VPM (Zhang et al., 2017), FLUXCOM (Jung et al., 2017), SVR (Kondo et al., 2015), BESS (Jiang and Ryu, 2016), BEPS (Ju et al., 

2006; Liu et al., 2018), and TRENDY. Ten of the twelve biophysical models (except BESS and BEPS) were the models in TRENDY. 

 665 
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Figure 9: Comparison of (a1)–(a3) averaged annual GPP, (b1)–(b3) interannual variability in annual GPP represented by 

standard deviation (SD), and (c1)–(c3) annual GPP trend among different GPP datasets or models. The references of these models 

are the same as in Figure 9. ∗ indicates that the valid period of the dataset is beginning from 2000 or 2001. TRENDYavg is the 

averaged GPP of the ten TRENDY models. 670 
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